Harmonic functions on Hilbert space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Definite Functions on Hilbert Space

is always non-negative, for any positive integer n and all points x1, . . . , xn in H is said to be positive definite on Hilbert space. In Schoenberg (1938), it was shown that a function is positive definite on Hilbert space if and only if it is completely monotonic, and this characterization is of central importance in the theory of radial basis functions and learning theory. In this paper, we...

متن کامل

Some Harmonic Functions on Minkowski Space

This note presents elementary geometric descriptions of several simple families of harmonic functions on the upper sheet of the unit hyperboloid in Minkowski three-space. As is briefly discussed here, these calculations grew out of an earlier attempt to construct Poincaré series on punctured surfaces using Minkowski geometry. Introduction The material in this note grew out of an attempt (discus...

متن کامل

Multipliers on a Hilbert Space of Functions on R

For a Hilbert space H ⊂ L loc (R) of functions on R we obtain a representation theorem for the multipliers M commuting with the shift operator S. This generalizes the classical result for multipliers in L(R) as well as our previous result for multipliers in weighted space L ω (R). Moreover, we obtain a description of the spectrum of S.

متن کامل

Learning Positive Functions in a Hilbert Space

Semidefinite Programming Formulation By representer theorem: f(x) = ∑n l=1 αlK (Xi, x) under the condition that the function has an SoS representation, i.e., f(x) = φ(x)>Qφ(x) for some Q 0. Define a d × n matrix Φ = [φ(X1) · · ·φ(Xn)] and an n × n diagonal matrix A = diag(α) = diag(α1, . . . , αn). We have Q = ΦAΦ>. Q is d × d, but has rank n, which can be much smaller than d. The constraint on...

متن کامل

On uniformly bounded spherical functions in Hilbert space

Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms G 3 a 7→ ka ∈ G, k ∈ K. Let H be a complex Hilbert space and let L (H) be the algebra of all bounded linear operators on H. A mapping u : G→ L (H) is termed a K-spherical function if it satisfies (i) |K|−1 ∑ k∈K u(a+kb) = u(a)u(b) for any a, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1972

ISSN: 0022-1236

DOI: 10.1016/0022-1236(72)90041-9